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Abstract— In this paper, we extend our clustering-based
model order reduction method for multi-agent systems with
single-integrator agents to the case where the agents have
identical general linear time-invariant dynamics. The method
consists of the Iterative Rational Krylov Algorithm, for finding
a good reduced order model, and the QR decomposition-
based clustering algorithm, to achieve structure preservation
by clustering agents. Compared to the case of single-integrator
agents, we modified the QR decomposition with column pivoting
inside the clustering algorithm to take into account the block-
column structure. We illustrate the method on small and large-
scale examples.

I. INTRODUCTION

The study of consensus and synchronization for multi-
agent systems has received considerable attention in recent
years [1], [2], [3]. In brief, multi-agent systems are network
systems that can consist of a very large number of simple and
identical subsystems, called agents. This motivates research
on clustering-based model order reduction (MOR) methods
that would reduce the large network, simplifying analysis,
simulation, and control, while preserving consensus and
synchronization properties.

We have developed a clustering-based MOR method for
multi-agent systems with single-integrator agents [4]. Here,
we generalize this method to multi-agent systems where
agents have identical, but general, linear time-invariant (LTI)
dynamics.

There are several published papers related to the work
presented here. The paper [5] extends the clustering-based
MOR method based on θ-reducible clusters from [6] to
networks of second-order subsystems, but not more general
subsystems. The controller-Hessenberg form is the basis of
the extended method and the H∞-error bound. The authors
of [7] propose a clustering method for networks of identical
passive subsystems, although it is limited to networks with
a tree structure. The reference [8] extends the expression for
the clustering-based H2-error from [9] to a class of second-
order physical network systems, when almost equitable par-
titions are used.

The outline of this paper is as follows. In Section II we
introduce the necessary background. We explain the more
general clustering method in Section III and demonstrate
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it on a few examples in Section IV. We conclude with
Section V.

II. PRELIMINARIES

A. Multi-Agent Systems

We define a multi-agent system over an undirected, weight-
ed, connected graph G = (VG, EG, AG) with the set of
vertices VG = {1, 2, . . . , nG}, the set of edges EG and the
adjacency matrix AG = [aij ] ∈ RnG×nG . First, in every
vertex of the graph we define an agent

ẋi(t) = Axi(t) +Bzi(t),

yi(t) = Cxi(t),

with its state xi(t) ∈ RnA , input zi(t) ∈ RmA , and output
yi(t) ∈ RpA , for i ∈ VG. A, B, and C are real matrices of
appropriate sizes and identical for all agents, but they can
be arbitrary (later, we will constrain this choice to guarantee
the stability or synchronization of the multi-agent system).

Second, we define the inputs of individual agents, consist-
ing of a coupling term and an external input to some agents
called leaders. Let VL = {v1, v2, . . . , vmG

} ⊆ VG be the set
of leaders. Then, we define the input of the ith agent as

zi(t) :=

{
K
∑nG

j=1 aij(yj(t)− yi(t)) + uk(t), if i = vk,

K
∑nG

j=1 aij(yj(t)− yi(t)), otherwise,

where K ∈ RmA×pA and uk(t) ∈ RmA is the kth external
input, for k ∈ {1, 2, . . . ,mG}. For simplicity, we assume
that pA = mA and K = ImA

.
We find that the dynamics of the multi-agent system is

ẋ(t) = (InG
⊗A− L⊗BC)x(t) + (M ⊗B)u(t), (1)

with state

x(t) =


x1(t)
x2(t)

...
xnG

(t)

 ∈ RnGnA

and input

u(t) =


u1(t)
u2(t)

...
umG

(t)

 ∈ RmGmA ,
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where L ∈ RnG×nG is the Laplacian matrix of the graph G
defined by

[L]ij :=

{∑nG

k=1 aik, if i = j,

−aij , if i 6= j,

and M =
[
ev1 ev2 · · · evmG

]
∈ RnG×mG . For the

output of the multi-agent system

y(t) = CMASx(t), (2)

we consider two possibilities. The first is

CMAS =W
1
2RT ⊗ InA

, (3)

where R ∈ RnG×pG and W ∈ RpG×pG are the incidence and
edge weights matrices of the graph G and pG is the number
of edges of the graph G. As in [9], the output in this case is
a vector of weighted differences of agents’ states across the
edges. The second is

CMAS =
[
eh1

eh2
· · · ehpG

]T ⊗ InA
, (4)

where h1, h2, . . . , hpG ∈ VG. Here, the output is a vector
of a few agents’ states. Other possibilities for the output
include replacing InA

in (3) or (4) with C, such that the
output depends of the agents’ outputs, and not states.

B. Model Order Reduction via Projection

Petrov-Galerkin projection is a general framework for
MOR techniques. Numerous methods, including balanced
truncation and moment matching (see [10] for an overview),
belong to the class of Petrov-Galerkin projection methods.
We briefly introduce this framework here.

Let

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(5)

be an arbitrary LTI system of order n, where A ∈ Rn×n, B ∈
Rn×m, and C ∈ Rp×n. Then, Petrov-Galerkin projection
consists of choosing two full-rank matrices Vr,Wr ∈ Rn×r,
for some r < n, and defining a reduced order model (ROM)
of order r by

WT
r Vr

˙̂x(t) =WT
r AVrx̂(t) +WT

r Bu(t),

ŷ(t) = CVrx̂(t).
(6)

Note that multiplying Vr and Wr on the right by nonsingular
matrices gives us an equivalent LTI system for the ROM.
Therefore, the ROM is defined by ImVr and ImWr, the
subspaces generated by the columns of Vr and Wr.

C. Projection-Based Clustering

Let π = {C1, C2, . . . , CrG} be a partition of the graph
G, i.e. of the vertex set VG. The characteristic matrix of the
partition π is the matrix P (π) ∈ RnG×rG defined by

[P (π)]ij :=

{
1, if i ∈ Cj ,
0, otherwise,

for all i ∈ VG and j ∈ {1, 2, . . . , rG} [9]. Analogously to [9]
for single-integrator agents, we define the Petrov-Galerkin
projection matrices

Vr := P (π)⊗ InA
,

Wr := P (π)
(
P (π)TP (π)

)−1 ⊗ InA
,

which achieve clustering for multi-agent systems with gen-
eral linear dynamics. To see this, notice that the ROM of the
multi-agent system (1), (2) is then

˙̂x(t) =
(
InG
⊗A−

(
PTP

)−1
PTLP ⊗BC

)
x̂(t)

+
((
PTP

)−1
PTM ⊗B

)
u(t),

ŷ(t) = CMAS(P ⊗ InA
)x̂(t),

(7)

where we use a shorter notation P := P (π). [9] shows that
the matrix

L̂ :=
(
PTP

)−1
PTLP

is the Laplacian matrix of a directed, symmetric, connected
graph, on which the reduced multi-agent system is defined.
In this sense, the network structure is preserved in the ROM.

D. Stability and Synchronization

The paper [11] analyzes the stability and synchronization
of systems such as (1). The system (1) is stable if the matrix
InG
⊗A−L⊗BC is Hurwitz, as is the usual definition. It

is shown that the matrix InG
⊗ A − L ⊗ BC is Hurwitz if

and only if A− λBC is Hurwitz for every eigenvalue λ of
L. In fact, more generally, it is shown that

σ(InG
⊗A− L⊗BC) =

⋃
λ∈σ(L)

σ(A− λBC).

The system (1) is synchronized if xi(t) − xj(t) → 0 as
t→∞, for all i, j ∈ VG and for all initial conditions when
the input u is zero. This condition is clearly equivalent to the
output stability, where the output represents the discrepancies
among the agents, such as in (3). The following Lemma
(Lemma 4.2 in [11]) gives the necessary and sufficient
condition for synchronization.

Lemma 1: Let G be an undirected, weighted, connected
graph. Then the system (1) is synchronized if and only if
A− λBC is Hurwitz for all positive eigenvalues λ of L.

Here, we are interested in synchronized multi-agent sys-
tems and how to preserve synchronization in the ROM
using clustering. Using Cauchy’s interlacing theorem (as
was done in [9]), it can be seen that the matrix L̂ has
a simple zero eigenvalue and that the other eigenvalues
are positive and lie between the positive eigenvalues of L.
We note that Lemma 1 can be extended to graphs with
Laplacian matrices having the same properties as L̂, namely
the real spectrum and the simple zero eigenvalue with the
corresponding right eigenvector of all ones. Therefore, it is
necessary and sufficient that A− λBC is Hurwitz for every
positive eigenvalue of L̂ for the ROM (7) to be synchronized.

Now we identify a sufficient condition for preserving
synchronization, independent of the partition used. Let there
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be an open interval (α, β), 0 6 α < β 6 ∞, such that
A − λBC is Hurwitz for all λ ∈ (α, β). Then, if (α, β)
contains all positive eigenvalues of L, then the original
system (1), (2) and all the ROMs (7) are synchronized. In
case α = 0 and β is finite, we can move all the positive
eigenvalues of L inside the interval (0, β) by scaling down
all the weights in the graph, which is a simple method to
ensure synchronization of the original system and the ROMs.

One interesting example of an agent is the undamped
oscillator, given by the matrices

A =

[
0 1
−k 0

]
, B =

[
0
1

]
, C =

[
c1 c2

]
.

It is easy to check that A is not Hurwitz, but that A−λBC
is Hurwitz for all λ > 0 if k > 0, c1 > 0, and c2 > 0.
Therefore, in this case α = 0 and β =∞.

III. CLUSTERING METHOD

A. H2-Optimal Model Order Reduction

In Section II-B, we introduced Petrov-Galerkin projection
as a general MOR framework, without describing how to
choose good projection matrices Vr and Wr. Here, we
formulate the H2-optimal MOR problem and refer to an
efficient method for solving it.

The H2-norm ‖·‖H2
is defined for any stable, strictly

proper transfer function H by

‖H‖2H2
=

1

2π

∫ ∞
−∞
‖H(iω)‖2F dω,

where ‖·‖F is the Frobenius norm. Let H and Ĥ denote the
transfer functions of the LTI system (5) and its ROM (6).
The H2-optimal MOR problem is

min
Vr,Wr∈Rn×r

‖H − Ĥ‖H2
,

which is known to be intractable. The Iterative Rational
Krylov Algorithm (IRKA) finds a local optimum efficiently,
and it often finds the global optimum [12].

As Section II-D indicates, we are interested in synchro-
nized systems, which means that H can have unstable poles
(poles in the closed right complex half-plane). Considering
the H2-optimal MOR problem is possible also in this case.
Clearly, for ‖H − Ĥ‖H2

to be defined, H−Ĥ is necessarily
stable. This implies that Ĥ needs to preserve the unstable
poles of H . It follows that

‖H − Ĥ‖H2 = ‖Hstab − Ĥstab‖H2 ,

where Hstab and Ĥstab are the stable parts of H and Ĥ ,
obtained by removing the unstable poles from H and Ĥ .
We conclude that the H2-optimal ROM H̃ for an unstable
system H preserves the unstable poles of H and its stable
part H̃stab is an H2-optimal ROM for Hstab.

In particular, the (absolute) H2-error is defined, but the
same is not true for the relative H2-error, since ‖H‖H2

is
not defined. By abuse of terminology, we will refer to

‖H − Ĥ‖H2

‖Hstab‖H2

as the relative H2-error, which is actually the relative H2-
error between Hstab and Ĥstab. This is an appropriate measure
of error, since the H2-optimal MOR problem for an unstable
system reduces to an H2-optimal MOR problem for the
stable part of the system.

B. H2-Suboptimal Clustering

In [4], we proposed an H2-suboptimal clustering MOR
method for multi-agent systems with single-integrator agents.
The method combines IRKA and a QR decomposition-based
clustering algorithm introduced in [13].

We apply the clustering algorithm to the Petrov-Galerkin
projection matrices obtained from IRKA. The motivation for
this comes from the constraint

ImVr = ImP (π)

which the ROM needs to satisfy. An equivalent constraint is

Vr = P (π)Z,

with some nonsingular Z ∈ RrG×rG . Observing a simple
example for P (π) with π = {{1}, {2, 3}, {4, 5, 6}} (nG = 6,
rG = 3):

P (π) =


1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

 ,

we find that

Vr = P (π)Z =


1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1


z1z2
z3

 =


z1
z2
z2
z3
z3
z3

 ,

where zi ∈ R1×3, i ∈ {1, 2, 3}, are the rows of Z ∈ R3×3.
From this, we see that the rows of Vr are equal if and only
if the corresponding agents are in the same cluster. This
motivates the idea to cluster the rows of Vr obtained from
IRKA to find a H2-suboptimal partition π. Furthermore, the
rows of Z are linearly independent, which suggests using QR
decomposition with column pivoting on V Tr . This clustering
algorithm was introduced in [13] and is given in Algorithm 1.

Now we try to see if the same reasoning can give us
a clustering method for multi-agent systems with general
agents. Using the same example as before, with agents of
arbitrary order nA, we have

Vr = (P (π)⊗ InA
)Z

=


InA

0 0
0 InA

0
0 InA

0
0 0 InA

0 0 InA

0 0 InA


Z1

Z2

Z3

 =


Z1

Z2

Z2

Z3

Z3

Z3

 ,
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Algorithm 1 Clustering using QR decomposition with col-
umn pivoting [13], [4]

Input: Matrix V ∈ Rn×r of rank r
Output: Partition π such that ImP (π) ≈ ImV

1: Compute the QR decomposition of V T , i.e. find an
orthogonal Q ∈ Rr×r, an upper-triangular R ∈ Rr×n,
and a permutation matrix P ∈ Rn×n such that V TP =
QR

2: Let R =
[
R11 R12

]
, where R11 ∈ Rr×r is upper-

triangular and R12 ∈ Rr×(n−r)
3: Solve a triangular system R̃12 = R−111 R12

4: Compute Ṽ = P
[
Ir R̃12

]T
= [ṽij ] ∈ Rn×r

5: Find a partition π = {C1, C2, . . . , Cr} such that i ∈ Cj
if and only if j = argmaxk |ṽik|

6: Return π

Algorithm 2 QR decomposition with column pivoting for
matrices with block-columns

Input: Matrix X ∈ Rkr×kn of full rank, where n, r, k ∈
N and r < n
Output: Orthogonal matrix Q, upper-triangular matrix
R, and permutation matrix P such that XP = QR

1: Denote X =
[
X1 X2 · · · Xn

]
, where Xi ∈ Rkr×k

2: Find a block-column Xi with the largest Frobenius norm
and swap it with X1

3: Perform QR decomposition with column pivoting on X1,
i.e. find an orthogonal Q1 ∈ Rkr×kr, an upper-triangular
R1 ∈ Rkr×k, and a permutation matrix P1 ∈ Rk×k such
that X1P1 = Q1R1

4: Multiply all block-columns in X from the right by P1

5: Multiply X from the left by QT1
6: Repeat the procedure for X(k + 1 : kr, k + 1 : kn),

which computes the matrices Qi, Ri, and Pi, for i ∈
{2, 3, . . . , r}

7: Return Q = Q1Q2 · · ·Qr, R = X , and P with all of
the column permutations recorded

where Zi ∈ RnA×3nA , i ∈ {1, 2, 3}, are the block-rows
of Z ∈ R3nA×3nA . Here, we conclude that the block-rows
of Vr determine the clusters. This motivates us to modify
the method in Algorithm 1 such that it clusters the block-
rows of Vr. We see that we need to modify the QR decom-
position algorithm with column pivoting used in line 1 of
Algorithm 1, since applying column permutations can break
the block-column structure we found in [(P (π)⊗ InA

)Z]T .
Therefore, we have to limit the possible column permutations
that are performed on V Tr . This modified method is presented
in Algorithm 2. Additionally, in line 5 of Algorithm 1,
the absolute value needs to be replaced by a matrix norm
(we use the Frobenius norm) of the nA × nA blocks in

Ṽ = P
[
IrGnA

R̃12

]T
and indices i, j, k need to represent

the positions of the blocks.
Algorithm 1 returns the correct partition when ImVr =

ImP (π) (Lemma 1 in [4]). Analogously, it can be proved

1

2

3

4

5

6 7

8

9

10

5

2

2

5

7

6 1

1

1

2 1
33 6 7

Fig. 1. Example of a multi-agent system defined on an undirected,
weighted, connected graph. Vertices 6 and 7 are leaders. [9]

that the modified algorithm returns the correct partition when
ImVr = Im(P (π) ⊗ InA

). Therefore, we expect for the
modified algorithm to find a partition close to optimal when
ImVr is close, in some sense, to Im(P (π)⊗ InA

).
We proved in [4] that Algorithm 1 is of linear complexity

in the number of agents and quadratic in the number of
clusters. Since the QR decomposition is computationally the
most expensive part, we conclude that the same is true for
the modified algorithm, except that it is further of cubic
complexity in the order of the agent, since Vr is of size
nGnA× rGnA. Therefore, if agents are large-scale systems,
it is sensible to apply MOR to agents before clustering. We
will not consider agent reduction here, but it is an interesting
problem for future work.

IV. NUMERICAL EXAMPLES

A. Small-Scale Example

We use the example from [9], shown in Figure 1, except
that the agents are undamped oscillators:

A =

[
0 1
−1 0

]
, B =

[
0
1

]
, C =

[
1 1

]
.

Therefore, the multi-agent system (1), (3) has n = nGnA =
10 · 2 = 20 states, m = mGmA = 2 · 1 = 2 inputs, and
p = pGnA = 15 · 2 = 30 outputs.

Let us fix the number of clusters to rG = 5. Thus, the
reduced order is r = rGnA = 10. The matrix InG

⊗ A −
L⊗BC is not Hurwitz, but unstable poles are unobservable.
Therefore, we can directly use IRKA, which converges to a
ROM of order r in under 30 iterations, with the relative H2-
error of 7.149 · 10−3. Block-row clustering of the projection
matrix Vr generated by IRKA returns the partition

{{1}, {2, 3, 4, 8, 9, 10}, {5}, {6}, {7}},

where the corresponding ROM produces the relative H2-
error of 0.2130. The H2-optimal partition with five clusters
(there are 42 525 partitions of the set {1, 2, . . . , 10} with five
clusters) is

{{1, 2, 3, 4}, {5, 8}, {6}, {7}, {9, 10}},
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with the relative H2-error of 0.1395.
Since all the multi-agent systems here are synchronized

and not stable, we had to remove unstable states, which are
also unobservable, before computing the H2-norms. We can
see that {1 ⊗ e1,1 ⊗ e2} spans the unstable subspace of
I⊗A−L⊗BC, where 1 is a vector of ones and e1, e2 ∈ R2

are canonical vectors. Therefore, we find that the following
sparse projection matrices Vstab,Wstab ∈ Rn×(n−2)

Vstab =

I0
0

 , Wstab =

 I
−1T ⊗ eT1
−1T ⊗ eT2


remove unstable states.

B. Large-Scale Example

We randomly generated an undirected, unweighted, con-
nected graph using the following Python 2.7.10 code (with
NetworkX 1.10, NumPy 1.10.4, and SciPy 0.16.1 modules)

import networkx as nx
G = nx.powerlaw_cluster_graph(1000, 2, 0.5, seed=0)
L = nx.laplacian_matrix(G)

where the Holme-Kim algorithm [14] is utilized. The result-
ing graph has 1000 vertices and 1996 edges. We decided for
the multi-agent system with the dynamics in (1), where the
agents are undamped oscillators as in the previous example
and the leaders are the first three agents. For the output, we
chose (4), containing the states of the fourth and fifth agents,
i.e.

y(t) =
([
e4 e5

]T ⊗ I2)x(t).
Thus, the number of states, inputs, and outputs are n = 2000,
m = 3, and p = 4.

We notice that the unstable states are now observable.
Therefore, to apply IRKA, we need to remove the unstable
states. We achieve this using sparse projection matrices
Vstab,Wstab ∈ Rn×(n−2) defined above. Let VIRKA,WIRKA ∈
R(n−2)×r denote the projection matrices computed by IRKA.
Instead of applying the clustering algorithm to VstabVIRKA,
where the last two rows are always zero, we computed the
SVD decomposition of[

VstabVIRKA WstabWIRKA
]
∈ Rn×2r

and applied the clustering algorithm to the first r left
singular vectors, since they span the dominant r-dimensional
subspace.

We observed that IRKA does not converge (in under 100
iterations) and even returns unstable ROMs for larger reduced
orders. Despite this, we noticed that using two iterations
of IRKA already returns a good partition and that using
more iterations does not significantly improve the H2-error
associated with the resulting partition (we observed the same
behavior when using output (3), with 2 · 1996 outputs).
Figure 2 reports relative H2-errors due to clustering for
different numbers of clusters. All H2-norms are computed
with respect to the stable parts.
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Fig. 2. Relative H2-errors when clustering a multi-agent system with 1000
agents.

V. CONCLUSION

We presented an extension of our method, combining
IRKA and a clustering algorithm, for clustering-based MOR
of multi-agent systems where agents have identical general
LTI dynamics. Heuristically, it appears that this method
finds a partition close to the optimal. We demonstrated
this on a small-scale example, where the obtained partition
results in the H2-error of the same order of magnitude as
the optimal. Furthermore, we showed that this method is
applicable to multi-agent systems with a large number of
agents of small to medium order. We illustrated this on a
large-scale example with 1000 agents of second order. A
theoretical explanation that shows when the algorithm finds
a partition close to optimal remains an open problem for
future work. Combining the clustering method with the MOR
of agents is an interesting problem for future work.
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