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Abstract— In this paper we present an efficient model order
reduction method for multi-agent systems with Laplacian-based
dynamics. The method combines an established model order
reduction method and a clustering algorithm to produce a
graph partition used for reduction, thus preserving structure
and consensus. By the Iterative Rational Krylov Algorithm, a
good reduced order model can be found which is not necessarily
structure preserving. However, based on this we can efficiently
find a partition using the QR decomposition with column
pivoting as a clustering algorithm, so that the structure can
be restored. We illustrate the effectiveness on an example from
the open literature.

I. INTRODUCTION

Simulation and control of systems connected in a network
are ubiquitous problems in many areas of the sciences and
engineering, see, e.g., [1], [2], [3]. Due to their complexity,
networked systems usually constitute large-scale dynamical
systems. Model order reduction methods are often necessary
for analysis, simulation, and control of large-scale systems.
Additionally, for multi-agent systems, model order reduction
methods preserving network structure and consensus (see [4]
for an overview of the consensus problem) are preferred.

References [5], [6], [7] introduce leader-invariant equi-
table partitions and corresponding quotient graphs, which
can be used for eliminating some uncontrollable states, thus
performing no model reduction error. Reference [8] proposes
leader partitions, which introduce “only small model errors”.
The authors of [9] develop a clustering-based H∞ model
order reduction method based on positive tridiagonalization
and θ-reducible clusters, applicable to linear time-invariant
(LTI) systems with asymptotically stable and symmetric
dynamics matrices.

In [10], the authors focus on leader-follower linearly
diffusively coupled multi-agent systems with agents hav-
ing single-integrator dynamics. In particular, these systems
have Laplacian-based dynamics, which means they are not
asymptotically stable. The authors demonstrate how using
partitions for model order reduction can be transformed to
using Petrov-Galerkin projections, while preserving network
structure and consensus in the reduced order model (ROM).
Further, they derive a simple expression for the relative H2-
error when using an almost equitable partition (AEP) and
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establish a lower bound based on AEPs when using any
partition.

The authors of [11] study networks of identical passive
systems over weighted and directed graphs, but confine
to interconnections with tree structures. Otherwise, these
systems would be more general then those in [10]. They
present a clustering method relying on the analysis of the
corresponding edge system to find adjacent subsystems to
cluster. Furthermore, they prove that this method preserves
the consensus property. Nonetheless, clustering only adjacent
subsystems might be restrictive.

The paper [12] presents an efficient clustering-based
method for H2 model order reduction of positive networks,
which include systems with Laplacian-based dynamics. Sim-
ilarly to [9], the method is based on θ-reducible clusters and
an H2-error bound. However, it is not clear how the ROMs
resulting from this method compare to the H2-optimal ones.
To the best of our knowledge, there is no efficient method
for finding an H2-optimal ROM using graph partitions. Here,
we propose an efficient H2-suboptimal method, originating
from the H2-optimal model order reduction problem for LTI
systems, and illustrate it on an example. Results indicate that
the method finds a partition close to the optimal.

The outline of the paper is as follows. Section II explains
notation and concepts used later. In Section III, we motivate
and describe our model order reduction method, together
with the issue of computing the H2-error for systems with
Laplacian-based dynamics. We illustrate the method on an
example in Section IV and conclude with Section V.

II. PRELIMINARIES

Here we describe necessary notions for understanding the
following sections. For details see [10].

A. Multi-Agent Systems

Let G = (V,E,A) be a weighted graph with a vertex set
V = {1, 2, . . . , n}, n ∈ N, an edge set E, and an adjacency
matrix A = [aij ] ∈ Rn×n with nonnegative elements. We
say that

• G is undirected if E ⊆ {{i, j} : i, j ∈ V },
• G is directed if E ⊆ {(i, j) : i, j ∈ V },
• aij > 0 if and only if {i, j} ∈ E or (j, i) ∈ E,
• G is simple if aii = 0 for all vertices i ∈ V ,
• G is connected if for all vertices i, j ∈ V , i ̸= j, there

exist some vertices i1, i2, . . . , ik ∈ V , k ⩾ 0, such that
ai1,i, ai2,i1 , . . . , aj,ik are positive,

• G is symmetric if aij > 0 ⇔ aji > 0 for all vertices
i, j ∈ V .



For undirected graphs we always have AT = A, whereas for
directed symmetric graphs this is not necessarily true.

We further define:
• in-degree di =

∑n
j=1 aij of a vertex i ∈ V ,

• in-degree matrix D = diag(d1, d2, . . . , dn),
• Laplacian matrix L = D −A,
• incidence matrix R ∈ Rn×p, where p is the number of

edges (p = |E|) and every column r of R is associated
to one edge e ∈ E and satisfies

ri =


1, if e = (i, j) for some j ∈ V,

−1, if e = (j, i) for some j ∈ V,

0, otherwise,

if G is directed, while e is given an arbitrary orientation
if G is undirected,

• edge-weights matrix W ∈ Rp×p with edge weights on
its diagonal in the order corresponding to the incidence
matrix R, and off-diagonal elements zero.

We now define a multi-agent system on a simple, undi-
rected, weighted, and connected graph G. We declare some
nodes to be leaders and others to be followers. Let m ∈ N,
m ⩽ n, be the number of leaders, VL = {v1, v2, . . . , vm} ⊆
V the set of leaders, and VF = V \ VL the set of followers.
Defining M ∈ Rn×m with

Mij =

{
1, if i = vj ,

0, otherwise,

the system

ẋ(t) = −Lx(t) +Mu(t), (1a)

y(t) = W
1
2RTx(t), (1b)

is a leader-follower linearly diffusively coupled multi-agent
system, where the agents have single-integrator dynamics,
with input u(t) ∈ Rm, state x(t) ∈ Rn, and output y(t) ∈
Rp.

The input u(t) represents external input to leaders, the
components of the state x(t) are the values of the agents in
the nodes, and the output y(t) are weighted differences of
the agents’ values across edges. The property of interest for
multi-agent systems is reaching consensus, which says that
xi(t) − xj(t) → 0 when u ≡ 0, for all i, j ∈ V and all
initial values. For system (1), this is equivalent to y(t) → 0,
because the multi-agent system is defined on a connected
graph.

B. Model Order Reduction Preserving Structure and Con-
sensus

Petrov-Galerkin projection is a general approach for re-
ducing an arbitrary LTI system [13], [14]. On the example
in (1), the approach consists of choosing two r-dimensional
subspaces Vr,Wr ⊂ Cn and describing the dynamics of the
ROM with:

Find v(t) ∈ Vr such that

v̇(t) + Lv(t)−Mu(t) ⊥ Wr.

Then the output is ŷ(t) = W
1
2RT v(t).

By choosing some matrices Vr,Wr ∈ Cn×r such that
ImVr = Vr and ImWr = Wr (where Im denotes the image
of a matrix), we get the ROM

WT
r Vr

˙̂x(t) = −WT
r LVrx̂(t) +WT

r Mu(t), (2a)

ŷ(t) = W
1
2RTVrx̂(t), (2b)

which is an LTI system with input u(t) ∈ Rm (same as in
(1)), state x̂(t) ∈ Rr, and output ŷ(t) ∈ Rp.

In [10], the authors propose using

Vr = P (π), (3a)

Wr = P (π)
(
P (π)TP (π)

)−1
, (3b)

where P (π) is a characteristic matrix of a partition π of the
vertex set V . The characteristic matrix of a partition π =
{C1, C2, . . . , Cr} is the matrix P (π) ∈ Rn×r with

[P (π)]ij =

{
1, if i ∈ Cj ,

0, otherwise.

The ROM is then

˙̂x(t) = −
(
P (π)TP (π)

)−1
P (π)TLP (π)x̂(t)

+
(
P (π)TP (π)

)−1
P (π)TMu(t), (4a)

ŷ(t) = W
1
2RTP (π)x̂(t). (4b)

Using (3) preserves structure, in the sense that system
(4) represents a multi-agent system defined on a directed,
symmetric graph [10]. Furthermore, using (3) preserves
consensus, see [10, Theorem 4].

C. H2-Optimal Model Order Reduction Using Graph Parti-
tions

The H2-norm is defined, for any H ∈ H2 (e.g. stable,
strictly proper, rational matrix functions), by

∥H∥2H2
=

1

2π

∞∫
−∞

∥H(iω)∥2F dω,

where ∥·∥F denotes the Frobenius norm. Let

H(s) = W
1
2RT (sI + L)−1M,

Ĥ(s) = W
1
2RTVr

(
sWT

r Vr +WT
r LVr

)−1
WT

r M

be the transfer functions of systems (1) and (2), respectively.
We consider the following H2-optimal model order reduction
problem:

min
Vr,Wr∈Rn×r

∥H − Ĥ∥H2
, (5a)

s.t. Vr = P (π), (5b)

Wr = P (π)
(
P (π)TP (π)

)−1
, (5c)

π ∈ Π, |π| = r, (5d)

where Π is a set of all partitions of the vertex set V .
Problem (5) is actually a discrete optimization problem

over a set of partitions of a set {1, 2, . . . , n} with r cells.



The number of such partitions is given by the Stirling number
of the second kind S(n, r) [15].

In the literature (to our best knowledge), there is no
efficient method to exactly solve the optimization problem
(5). Thus, our idea is to solve a relaxed problem, and use
that solution to find a feasible solution for (5). We hope that
this feasible solution is then close to the optimal solution as
it is close to the optimal solution of the relaxed problem.

III. METHOD AND H2-ERROR COMPUTATION

In this section, we first present our new method to find a
partition in order to create a good ROM. Since numerically
computing the H2-error is a crucial part in comparing
our results, we dedicate the second half of this section to
explaining how we did this.

A. The proposed method
1) Relaxation: We relax the problem (5) by dropping all

constraints (5b), (5c), and (5d). Thus, we obtain the H2-
optimal model order reduction problem for an LTI system.
The Iterative Rational Krylov Algorithm (IRKA) finds a
(locally) optimal solution efficiently for large-scale problems
[14]. Note that the dynamics matrix in (1a) is not asymptot-
ically stable, but IRKA can still be used because the transfer
function of the system (1) is an element of H2. The fact
that the transfer function associated to the LTI system (1) is
indeed contained in H2 follows from the proof of Theorem 6
in [10]. See also Section III-B below for some elaboration
on the technicalities associated to this problem.

IRKA will not in general solve the original problem (5).
Therefore, IRKA will return as a result matrices Vr and Wr

which will not (in general) satisfy (3).
2) Finding a Feasible Solution: In Petrov-Galerkin pro-

jection, the subspaces Vr and Wr are enough to determine
the transfer function of the ROM. Therefore, the conditions
(5b) and (5c) can be replaced by

ImVr = ImP (π), (6)

ImWr = Im
(
P (π)

(
P (π)TP (π)

)−1
)
, (7)

without changing Ĥ and the cost (5a). The expression (6)
motivates us to look for a partition π such that the image of
P (π) is “close” to the image of Vr obtained by IRKA.

We know that the condition (6) is equivalent to the
existence of a nonsingular matrix Z such that Vr = P (π)Z.
In general, condition (6) will not be satisfied, so there will
be an error E such that Vr = P (π)Z + E. A very similar
problem of finding a partition π was encountered in [16, §3],
where a proposed solution is a clustering algorithm based
on the QR decomposition with column pivoting. Algorithm 1
outlines the procedure. The idea behind it is the claim of
the following Lemma, which says that if Vr = P (π)Z, the
procedure will return the correct result.

Lemma 1: Algorithm 1 returns π with P (π)Z as input,
for an arbitrary partition π and a nonsingular matrix Z.

Proof: Let the number of cells in π be r, i.e. |π| = r.
Let us denote the rows of Z with zT1 , z

T
2 , . . . , z

T
r . Fur-

thermore, without loss of generality we can assume that

Algorithm 1 Finding a partition using QR decomposition
with column pivoting [16, §3]

Input: Matrix Vr ∈ Rn×r of rank r
Output: Partition π such that ImP (π) ≈ ImVr

1: Perform QR decomposition with column pivoting on
the matrix V T

r , i.e. find orthogonal Q ∈ Rr×r, upper-
triangular R ∈ Rr×n, and a permutation matrix P ∈
Rn×n such that V T

r P = QR
2: Partition R as

[
R11 R12

]
, with R11 ∈ Rr×r square

upper-triangular and R12 ∈ Rr×(n−r)

3: Solve the triangular system R11X = R12

4: Compute Y = P
[
Ir X

]T
= [yij ] ∈ Rn×r

5: Find a partition π = {C1, C2, . . . , Cr} such that i ∈ Cj

if and only if j = argmaxk |yik|
6: Return π

P (π) = diag
(
1|C1|,1|C2|, . . . ,1|Cr|

)
, where 1k ∈ Rk is a

vector of all ones (this structure can be achieved by relabeling
the vertices of the graph). Then we have

ZTP (π)T =
[
z11

T
|C1| z21

T
|C2| · · · zr1

T
|Cr|

]
. (8)

Therefore, ZTP (π)T has repeating columns in blocks. If
we perform the QR decomposition with column pivoting
on (8) (ignoring the orthogonal matrix) and then undo the
permutation of columns, the result is[

z̃11
T
|C1| z̃21

T
|C2| · · · z̃r1

T
|Cr|

]
, (9)

where a permutation of the columns of
[
z̃1 z̃2 · · · z̃r

]
gives the upper-triangular matrix R11 from Algorithm 1. We
see that multiplying (9) on the left by R−1

11 (P (π)Z having
full rank implies that R11 is nonsingular) and transposing
produces P (π), possibly with permuted columns. Thus we
conclude that Algorithm 1 returns the partition π.

The following Lemma gives the time and space complexity
of Algorithm 1, proving that it is efficient even in the large-
scale setting.

Lemma 2: In Algorithm 1, the number of floating point
operations is O(nr2) and the size of additional storage is
O(nr).

Proof: The QR decomposition with column pivoting in
line 1 performs r iterations. Each iteration consists of:

• looking for a (sub)column with maximum Euclidean
norm (there are O(n) columns and computing the norm
takes O(r) flops),

• replacing two columns if necessary (O(r) swaps), and
• applying a Householder reflection on a (sub)matrix of

size O(r)×O(n) (O(nr) flops).
It follows that the number of operations in line 1 is O(nr2).
The amount of necessary storage is nr+n for the matrix R
and the permutation matrix P .

In line 3 it is necessary to solve a triangular system of size
r with n− r right-hand sides. Solving one triangular system
takes O(r2) flops. Therefore, it takes O(nr2) flops to solve
a system in line 3, without necessary additional storage—the
solution can be stored in the place of R12.



The calculation in line 4 does not need to be performed
explicitly and can be included in the operation in the next
line. In line 5 it is necessary to find maximum elements in n
vectors of size r, which can be done in O(nr) comparisons.

Adding the contributions of all the lines in Algorithm 1
gives us the claim of the Lemma.

B. Computing the H2-error

When using an AEP, the relative H2-error can be com-
puted directly [10, Theorem 6]. In other cases, we need to
solve Lyapunov equations to compute the H2-norms.

To use a Lyapunov equation to compute the H2-norm, it
is necessary that the state dynamics matrix is stable. The
problem here is that neither the full system (1) nor the ROM
(4) satisfy this, as the following Lemma explains.

Lemma 3: The state dynamics matrices of the systems (1)
and (4) have nonpositive eigenvalues and their kernels are
spanned by 1 (a vector of all ones of appropriate size).

Proof: The matrices in question are

−L and −
(
P (π)TP (π)

)−1
P (π)TLP (π).

The claim for −L follows from the properties of the Lapla-
cian matrix of a connected graph. In particular, from positive
semi-definiteness of L it follows that the eigenvalues of −L
are nonpositive. Further, from the definition of the Laplacian
matrix, we see that 1 is in the kernel of −L. Finally, from
the assumption of connectedness of the graph, we conclude
that the kernel of −L is a one-dimensional subspace.

For the second matrix, from [10, Lemma 3] we can
conclude that its eigenvalues are nonpositive. Lastly, from
[10, Theorem 4] it follows that 1 spans its kernel.

The following Lemma shows that both the full system
(1) and the ROM (4) have transfer functions from H2, even
though their state dynamics matrices have zero eigenvalues.

Lemma 4: The state 1 is unobservable for systems (1) and
(4).

Proof: From RT1 = 0 and P (π)1 = 1, it follows that
1 is in the kernel of both output matrices of systems (1) and
(4), which implies the claim.

Applying Lemmas 3 and 4, we use the state transformation
x̃ = Tx with

T =


1 −1

. . .
...

1 −1
1

 , T−1 =


1 1

. . .
...

1 1
1


and eliminate the last (unobservable) component of x̃ to
obtain an equivalent system with a stable state dynamics
matrix.

IV. EXAMPLE

We used the example from [10] (see Figure 1). It is
a leader-follower linearly diffusively coupled multi-agent
system, defined on a simple, undirected, weighted, connected
graph. The graph has {1, 2, . . . , 10} as the vertex set and 15
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Fig. 1. Example, used in [10], of a leader-follower linearly diffusively
coupled multi-agent system on a simple, undirected, weighted, connected
graph. Vertices 6 and 7 are leaders.

edges. Vertices 6 and 7 are the leaders of the multi-agent
system. The Laplacian and input matrices are

L =



5 0 0 0 0 −5 0 0 0 0
0 5 0 0 −3 −2 0 0 0 0
0 0 6 −1 −2 −3 0 0 0 0
0 0 −1 6 −5 0 0 0 0 0
0 −3 −2 −5 25 −2 −6 −7 0 0

−5 −2 −3 0 −2 25 −6 −7 0 0
0 0 0 0 −6 −6 15 −1 −1 −1
0 0 0 0 −7 −7 −1 15 0 0
0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 −1 0 0 1


, M =



0 0
0 0
0 0
0 0
0 0
1 0
0 1
0 0
0 0
0 0


.

We chose an edge ordering and orientation such that the
incidence and edge-weights matrices are

R =



−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 −1 −1 −1 0 0 0 0 0
1 0 1 0 0 1 0 1 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 −1 −1 −1
0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


and W = diag(5, 3, 2, 1, 2, 3, 5, 2, 6, 7, 6, 7, 1, 1, 1).

The partition

{{1, 2, 3, 4}, {5, 6}, {7}, {8}, {9, 10}} (10)

is an AEP of the graph in Figure 1 used in [10]. It has
five cells, so we compare the relative H2-errors of different
ROMs of order r = 5. The partition (10) is actually the only
AEP with five cells, among the total of five AEPs of the
graph in Figure 1.

From [10, Theorem 6], it follows that for the AEP in (10),
the relative H2-error is

∥H − ĤAEP∥H2

∥H∥H2

=

√(
1− 1

2

)
+

(
1− 1

1

)
2
(
1− 1

10

) ≈ 0.527046,

(11)

where ĤAEP is the transfer function of the ROM using the
graph partition (10).
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Fig. 2. Graph partition (13) with five cells. The assignment of vertices to
cells is represented with different patterns and colors.

Next, we used IRKA to find a ROM of order r = 5. It
found a ROM with relative H2-error of

∥H − ĤIRKA∥H2

∥H∥H2

≈ 0.0330412, (12)

which is almost 16 times better than (11).
IRKA returned

Vr ≈



−0.129 −0.332 −0.234 0.377 0.470
−0.053 −0.305 −0.264 −0.114 0.219
−0.077 −0.307 −0.250 0.019 0.280
−0.005 −0.294 −0.289 −0.411 0.075
−0.023 −0.346 −0.069 0.154 −0.645
−0.927 −0.044 0.331 −0.169 0.010
0.310 −0.561 0.747 −0.087 0.151

−0.138 −0.324 −0.088 0.555 −0.334
0.010 −0.194 −0.158 −0.393 −0.220
0.010 −0.194 −0.158 −0.393 −0.220


.

The partition resulting from Algorithm 1 applied to the above
matrix is

{{1, 3}, {2, 4, 9, 10}, {5, 8}, {6}, {7}}, (13)

and is shown in Figure 2. The relative H2-error of a ROM
using partition (13) is

∥H − ĤVr
∥H2

∥H∥H2

≈ 0.150654, (14)

which is more than 4 times worse than (12), but 3 times
better than (11).

We notice by (7) that Wr can also be used to find a good
partition. IRKA found

Wr ≈



−0.211 −0.372 −0.034 0.295 0.107
−0.068 −0.160 −0.343 0.064 0.075
−0.121 −0.172 −0.198 0.178 0.112
0.032 −0.077 −0.592 −0.128 0.027
0.070 −0.117 0.062 −0.344 −0.857
0.868 −0.175 0.247 −0.011 0.235

−0.336 −0.040 0.335 −0.714 0.403
−0.252 −0.108 0.56 0.461 −0.128
0.009 0.610 −0.019 0.099 0.013
0.009 0.610 −0.019 0.099 0.013


,

TABLE I
TOP 20 PARTITIONS WITH 5 CELLS FOR REDUCING THE MULTI-AGENT

SYSTEM IN FIGURE 1

Rank Relative H2-error Partition
1 0.128053 {{1, 8}, {2, 3, 4, 9, 10}, {5}, {6}, {7}}
2 0.131311 {{1, 2, 3, 4}, {5, 8}, {6}, {7}, {9, 10}}
3 0.137466 {{1, 2, 3, 4, 9, 10}, {5}, {6}, {7}, {8}}
4 0.137473 {{1, 3, 8}, {2, 4, 9, 10}, {5}, {6}, {7}}
5 0.143700 {{1, 5, 8}, {2, 3, 4}, {6}, {7}, {9, 10}}
6 0.145900 {{1, 2, 3}, {4, 9, 10}, {5, 8}, {6}, {7}}
7 0.146196 {{1, 8}, {2, 3, 4, 9}, {5, 10}, {6}, {7}}
8 0.146196 {{1, 8}, {2, 3, 4, 10}, {5, 9}, {6}, {7}}
9 0.147022 {{1, 2, 3, 8}, {4, 9, 10}, {5}, {6}, {7}}
10 0.149240 {{1, 8, 9}, {2, 3, 4, 10}, {5}, {6}, {7}}
11 0.149240 {{1, 8, 10}, {2, 3, 4, 9}, {5}, {6}, {7}}
12 0.149654 {{1, 8}, {2, 4, 9, 10}, {3, 5}, {6}, {7}}
13 0.150440 {{1, 5}, {2, 3, 4, 9, 10}, {6}, {7}, {8}}
14 0.150654 {{1, 3}, {2, 4, 9, 10}, {5, 8}, {6}, {7}}
15 0.151684 {{1, 2, 8}, {3, 4, 9, 10}, {5}, {6}, {7}}
16 0.153100 {{1, 2, 3, 4, 9}, {5, 8}, {6}, {7}, {10}}
17 0.153100 {{1, 2, 3, 4, 10}, {5, 8}, {6}, {7}, {9}}
18 0.153819 {{1}, {2, 3, 4, 9, 10}, {5, 8}, {6}, {7}}
19 0.154374 {{1, 3, 8, 9}, {2, 4, 10}, {5}, {6}, {7}}
20 0.154374 {{1, 3, 8, 10}, {2, 4, 9}, {5}, {6}, {7}}

and in this example, Algorithm 1 returns the partition

{{1, 2, 3, 9, 10}, {4, 8}, {5}, {6}, {7}}. (15)

The relative H2-error when using the partition (15) is

∥H − ĤWr∥H2

∥H∥H2

≈ 0.179746,

which is worse than (14).
It is also possible to use IRKA’s Vr and Wr together. By

trial and error, we found that using Vr − 1
2Wr produces the

partition

{{1, 2, 3}, {4, 9, 10}, {5, 8}, {6}, {7}}, (16)

which results in the relative H2-error

∥H − ĤVr− 1
2Wr

∥H2

∥H∥H2

≈ 0.1459.

It is however not clear how to pick such a linear combination
and further research is needed to optimize this method.

Table I shows the best 20 partitions of size 5 and their
relative H2-errors. It should be noted that the total number of
partitions of a set with 10 elements into 5 cells is S(10, 5) =
42 525. We notice that partition (13) is the 14th partition and
that the best partition produces about 1.18 times better error.
Additionally, partition (16) is the 6th in Table I.

Table I does not show that partition (15) is 192nd and
partition (10) is 5996th. Thus, the new method gets a lot
closer to the optimal partition than the AEP in this example.

Furthermore, from Table I we see that, in all of the top 20
partitions, leaders 6 and 7 appear in singletons. This makes
sense, because this way no input is diffused over more agents.
However, further research is needed to see if, in general, the
best partition has leaders appearing in singletons.

As a final remark, the method we presented here can be
straightforwardly generalized. Just from the main ingredi-
ents, IRKA and QR decomposition, it is clear that the method



can be applied to any LTI system with a transfer function in
H2. This includes, e.g., systems defined over directed graphs.
Next, if another cost functional is preferred over the H2-
error, a different model order reduction method (within the
Petrov-Galerkin projection framework) can be used. Finally,
we do not claim that clustering via QR decomposition is
in any way optimal. It is possible to use any of the other
clustering methods, but further research is needed to see
which one would be, e.g., H2-optimal.

V. CONCLUSIONS

We presented our method, combining IRKA and a clus-
tering algorithm, for model order reduction of multi-agent
systems using graph partitions. It seems heuristically that this
method is able to create a partition whose H2-error is small.
We furthermore elaborated that this method is scalable to
large-scale systems. Our numerical test for a small network
shows that, among 42 525 partitions, our algorithm found the
14th best approximation whose error is of the same order of
magnitude as the error of the best partition. A theoretical
foundation that the algorithm always finds a partition in
some sense close to optimal remains an open problem for
future work. Ultimately, one would of course like to solve the
constrained optimization problem (5) with low complexity,
allowing to apply such an algorithm to large-scale problems.
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